研究生课程教学大纲(Syllabus)

	1						T	
课程代码	PH	IY6006	*学时	64	Ļ	*学分	4	
Course Code			Teaching Hours			Credits		
*课程名称	高等电动力学							
Course Name	Advanced Electrodynamics							
*授课语言 Instruction Language	中文(Chinese)							
*开课院系 School	物理与天文学院 (School of Physics and Astronomy)							
先修课程 Prerequisite	四大力学,数学物理方法。							
授课教师	姓名 Name		职称 Titl	e 単	位 Departme	nt 联系	方式 E-mail	
Instructors	孙弘		教授]理与天文学[hsun@sjtu.edu.cn	
*课程简介(中 文)Course Description	除了复习和扩展本科阶段已学过的电动力学基础知识外,本课程将重点学习以下内容:具有色散和损耗介质体系内电磁场能量的表达形式;电磁场动量在光镊、冷原子准晶格体系中的应用;等离子体的随机相位近似求解;磁流体波;因果律和Kramers-Kronig关系;电磁场的矢量球面波本征解;电磁辐射和散射光的多极矩展开表示;托马斯进动和自旋-轨道角动量耦合;带电粒子在均匀电磁场中的运动;Cherenkov辐射;渡越辐射;以及一般连续系统(包括电磁场)运动的拉格朗日和哈密顿方程表述。							
*课程简介 (English) Course Description	In addition to reviewing and expanding the basic knowledge of electrodynamics learned at the undergraduate level, this course will focus on learning the following subjects: the expression form of electromagnetic field energy in a dispersive and lossy dielectric system; application of electromagnetic field momentum in designing optical tweezers and cold atom quasi-lattice systems; random phase approximate in solution of plasma systems; magnetohydrodynamic waves; causality and Kramers-Kronig relationship; vector spherical wave eigen-solutions of electromagnetic field; multipole moment expansion representation of electromagnetic radiation and scattered light; Thomas precession and spin-orbital angular momentum coupling; the motion of charged particles in a uniform electromagnetic field; Cherenkov radiation; transition radiation; and the Lagrangian and Hamiltonian equations of the motion of general continuous systems (including electromagnetic fields).							
*教学安排 Schedules	周次 Week		教学内容 Content		授课学时 Hours	教学方式 Format	授课教师 Instructor	
	1	Equations 1-1 Maxwe 1-2 Vector transforma 1-3 Greer wave solut 1-4 Por conservati momentur	n's functions, and tions ynting's theore	ials, gauge diretarded em and gy and of charged	4	lecture	孙弘	

T T			1	,
2	1-5 Application: optical tweezer and quasi-crystal with cold atoms 1-6 Poynting's theorem in linear dispersive media with losses 1-7 Transformations of electromagnetic fields under rotations, inversion and time-reversal 1-8 Application: magneto-electric effect, quantum mechanical time-reversal and its application in valleytronics	4	lecture	孙弘
3	Chapter 2: Wave Propagation 2-1 Plane electromagnetic waves in non-conducting media 2-2 Linear and circular polarization of plane waves 2-3 Electromagnetic waves in conductors and media with losses 2-4 Frequency dispersions of dielectrics, conductors and plasmas	4	lecture	孙弘
4	2-5 Random phase approximation 2-6 Magnetohydrodynamic waves 2-7 Superposition of waves in one dimension, group velocity 2-8 Superluminality	4	lecture	孙弘
5	2-9 Causality in the connection between D (r , t) and E (r , t), Kramers-Kronig relation 2-10 Propagation of electromagnetic waves near the surface of and within a conductor	4	lecture	孙弘
6	Chapter 3: Radiating Systems 3-1 Fields and radiation of a localized oscillating source 3-2 Spherical wave expansion of the Green's function for the Helmhotz's equation 3-3 Multipole expansion of electromagnetic fields in the source-free region of vacuum space	4	lecture	孙弘
7	Chapter 4: Light Scattering and Diffraction 4-1 Light scattering at long wavelengths 4-2 Perturbation theory of scattering	4	lecture	孙弘
8	4-3 Density fluctuation and critical opalescence4-4 Light scattering at intermediate wavelength by a sphere	4	lecture	孙弘
9	Chapter 5: Special Theory of Relativity 5-1 Lorentz transformations, 4D- velocity, and addition of velocities 5-2 Relativistic momentum and energy of a particle 5-3 Lorentz transformation matrixes	4	lecture	孙弘

10	5-4 Invariance of electric charge, covariance of electrodynamics 5-5 Transformation of electromagnetic fields 5-6 Application: relativistic Doppler shift, Thomas precession and spinorbital angular momentum interaction	4	lecture	孙弘
11	Chapter 6: Dynamics of Relativistic Particles and Electromagnetic Fields 6-1 The electromagnetic force on a charged particle 6-2 Motion in a uniform, static magnetic field	4	lecture	孙弘
12	6-3 Motion in arbitrary combined uniform, static electric and magnetic fields 6-4 Lagrangian and Hamiltonian for a relativistic charged particle in electromagnetic field	4	lecture	孙弘
13	Chapter 7: Radiation by Moving Charges 7-1 Lienard-Wiechert potentials and fields for a point charge 7-2 Angular distribution of radiation emitted by an accelerated charge 7-3 Application: Synchrotron radiation facility and free electron lasers 7-4 Frequency distribution of energy radiated by an accelerated charge	4	lecture	孙弘
14	7-5 Cherenkov radiation 7-6 Transition radiation 7-7 Appendix: The Maxwell equations in a medium and transformation of ε and μ	4	lecture	孙弘
15	Chapter 8: Lagrangian Mechanics for Continuous Systems 8-1 From a discrete system to a continuous one 8-2 Lagrangian formulation for continuous systems 8-3 Conservation theorems of continuous systems 8-4 Hamiltonian formulation for continuous systems	4	lecture	孙弘
16	8-5 Lagrangian and Hamiltonian formulation for electromagnetic fields 8-6 Canonical and symmetric stress tensor of electromagnetic fields 8-7 Examples of Hamiltonian formulation for quantum mechanical systems: Klein-Gordon and Schrodinger (or Dirac) equations	4	lecture	孙弘

*考核方式 Grading Policy	第 17-18 周开卷笔试,3 小时。 Open written examination for three hours in weeks 17-18.
*教材或参考 资料 Textbooks & References	参考书: (1) J.D. Jackson (U.C. Berkeley), Classical Electrodynamics (1999, 3rd edition); (2) 郭硕鸿,电动力学(2008,第三版,北京,高等教育出版社)
备注 Notes	

备注说明:

- 1. 带*内容为必填项;
- 2. 课程简介字数为 300-500 字; 教学内容、进度安排等以表述清楚教学安排为宜,字数不限。